среда, 19 сентября 2018 г.

Математические трюки для всех, кто хочет быстро умножать, делить и складывать




"Чистая математика является в своём роде поэзией логической идеи", - Альберт Эйнштейн

В данной статье мы предлагаем вам подборку простых математических приёмов, многие из которых довольно актуальны в жизни и позволяют считать быстрее.



Быстрое вычисление процентов


Пожалуй наиболее актуальным математическим навыком можно назвать виртуозное вычисление процентов в уме. Самым быстрым способом вычислить определённый процент от числа является умножение данного процента на это число с последующим отбрасыванием двух последних цифр в получившемся результате, ведь процент есть не что иное, как одна сотая доля.

Сколько составляют 20% от 70? 70 × 20 = 1400. Отбрасываем две цифры и получаем 14. При перестановке множителей произведение не меняется, и если вы попробуете вычислить 70% от 20, то ответ также будет 14.

Данный способ очень прост в случае с круглыми числами, но что делать, если надо посчитать, к примеру, процент от числа 72 или 29? В такой ситуации придётся пожертвовать точностью ради скорости и округлить число (в нашем примере 72 округляется до 70, а 29 до 30), после чего воспользоваться тем же приёмом с умножением и отбрасыванием двух последних цифр.

Быстрая проверка делимости


Можно ли поровну поделить 408 конфет между 12 детьми? Ответить на этот вопрос легко и без помощи калькулятора, если вспомнить простые признаки делимости, которые нам преподавали ещё в школе.
  • Число делится на 2, если его последняя цифра делится на 2.
  • Число делится на 3, если сумма цифр, из которых состоит число, делится на 3. Например, возьмём число 501, представим его как 5 + 0 + 1 = 6. 6 делится на 3, а значит, и само число 501 делится на 3.
  • Число делится на 4, если число, образованное его последними двумя цифрами, делится на 4. Например, берём 2 340. Последние две цифры образуют число 40, которое делится на 4.
  • Число делится на 5, если его последняя цифра 0 или 5.
  • Число делится на 6, если оно делится на 2 и 3.
  • Число делится на 9, если сумма цифр, из которых состоит число, делится на 9. Например, возьмём число 6 390, представим его как 6 + 3 + 9 + 0 = 18. 18 делится на 9, а значит, и само число 6 390 делится на 9.
  • Число делится на 12, если оно делится на 3 и 4.

Быстрое вычисление квадратного корня


Квадратный корень из 4 равен 2. Это посчитает любой. А как насчёт квадратного корня из 85?

Для быстрого приблизительного решения находим ближайшее к заданному квадратное число, в данном случае это 81 = 9^2.

Теперь находим следующий ближайший квадрат. В данном случае это 100 = 10^2.

Корень квадратный из 85 находится где-то в интервале между 9 и 10, а поскольку 85 ближе к 81, чем к 100, то квадратный корень этого числа будет 9 с чем-то.

Быстрое вычисление времени, через которое денежный вклад под определённый процент утроится

В данном случае процентная ставка по вкладу должна стать делителем числа 115.

Если вклад сделан под 5% годовых, то потребуется 23 года, чтобы он утроился.

 

Продвинутая математика на пальцах


Ваши пальцы способны на гораздо большее, нежели простые операции сложения и вычитания. С помощью пальцев можно легко умножать на 9, если вы вдруг забыли таблицу умножения.

Пронумеруем пальцы на руках слева направо от 1 до 10.

Если мы хотим умножить 9 на 5, то загибаем пятый палец слева.

Теперь смотрим на руки. Получается четыре несогнутых пальца до согнутого. Они обозначают десятки. И пять несогнутых пальцев после согнутого. Они обозначают единицы. Ответ: 45.

Если мы хотим умножить 9 на 6, то загибаем шестой палец слева. Получим пять несогнутых пальцев до согнутого пальца и четыре после. Ответ: 54.

Таким образом можно воспроизвести весь столбик умножения на 9.

 

Быстрое умножение на 4


Существует чрезвычайно лёгкий способ молниеносного умножения даже больших чисел на 4. Для этого достаточно разложить операцию на два действия, умножив искомое число на 2, а затем ещё раз на 2.

Посмотрите сами. Умножить 1 223 сразу на 4 в уме сможет не каждый. А теперь делаем 1223 × 2 = 2446 и далее 2446 × 2 = 4892. Так гораздо проще.

Быстрое определение необходимого минимума


Представьте, что вы проходите серию из пяти тестов, для успешной сдачи которых вам необходим минимальный балл 92. Остался последний тест, а по предыдущим результаты таковы: 81, 98, 90, 93. Как вычислить необходимый минимум, который нужно получить в последнем тесте?

Для этого считаем, сколько баллов мы недобрали/перебрали в уже пройденных тестах, обозначая недобор отрицательными числами, а результаты с запасом — положительными.

Итак, 81 − 92 = −11; 98 − 92 = 6; 90 − 92 = −2; 93 − 92 = 1.

Сложив эти числа, получаем корректировку для необходимого минимума: −11 + 6 − 2 + 1 = −6.
Получается дефицит в 6 баллов, а значит, необходимый минимум увеличивается: 92 + 6 = 98.

Быстрое представление значения обыкновенной дроби


Примерное значение обыкновенной дроби можно очень быстро представить в виде десятичной дроби, если предварительно приводить её к простым и понятным соотношениям: 1/4,1/3, 1/2 и 3/4.

К примеру, у нас есть дробь 28/77, что очень близко к 28/84 = 1/3, но поскольку мы увеличили знаменатель, то изначальное число будет несколько больше, то есть чуть больше, чем 0,33.

 

Трюк с угадыванием цифры


Можно немного поиграть в Дэвида Блэйна и удивить друзей интересным, но очень простым математическим трюком.

Попросите друга загадать любое целое число.

Пусть он умножит его на 2.
Затем прибавит к получившемуся числу 9.
Теперь пусть отнимет 3 от получившегося числа.
А теперь пусть разделит получившееся число пополам (оно в любом случае разделится без остатка).
Наконец, попросите его вычесть из получившегося числа то число, которое он загадал в начале.

Ответ всегда будет 3.

MiniBoss Business School International

Кен Робинсон. Новый взгляд на систему образования

ABOUT MINIBOSS & BIGBOSS BUSINESS SCHOOL (RU)

ЛЕТНИЕ ЛАГЕРЯ "MINIBOSS"